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Abstract. A model of quasi-two-dimensional d-wave superconductor, with strong nesting properties of the
Fermi surface is considered. The orbital effect of a moderate magnetic field applied perpendicularly to the
conducting planes is studied in the mean field approximation. It is shown that the field can induce a time
reversal symmetry breaking SDW order coexisting with the superconducting order and can open a gap over
the whole Fermi surface. The anomalies recently observed in the heat conductivity in Bi2Sr2CaCu2O8+δ

might be ascribed to this effect.

PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating
valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) – 75.30.Fv Spin-
density waves – 74.72.Hs Bi-based cuprates

1 Introduction

During the last few years, a great deal of efforts has
been devoted to the determination of the high Tc super-
conductors order parameter symmetry. The pairing sym-
metry provides clues to the understanding of the super-
conducting pairing mechanism, which is essential for the
development of the theory of high temperature super-
conductivity in cuprates. Several authors have given
experimental evidences for a d-wave order parameter in
various high Tc superconductors, in particular in the
cuprate Bi2Sr2CaCu2O8+δ (Bi2212) [1–4].

The presence of nodes in the superconducting gap al-
lows the existence of quasiparticles, even at low tempera-
ture. This peculiarity offers the interesting opportunity of
testing the quasiparticle properties. Recent experimental
results have brought a large number of new insights con-
cerning quasiparticle behaviour, in particular in a mag-
netic field [5,6]. It is well-known that a two-dimensional
system of quasiparticles exhibits original properties when
a magnetic field is applied perpendicularly to its plane.
The orbital effect of the field makes the quasiparticle mo-
tion strictly one-dimensional. The result is a Spin Density
Wave (SDW) zero-sound type instability induced by the
field and the opening of a gap at the Fermi level [7,8].
In quasi-two-dimensional conductors, the same effect still
exists above a threshold field related to the transverse
coupling. The intensity of the relevant magnetic field is
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determined by the Fermi surface geometry and such a field
can be available in the laboratory only when this geometry
exhibits good nesting. Such is the case of various high Tc

superconductors, such as Bi2212. It is therefore interesting
to study the effect of the field in a quasi-two-dimensional
conductor, in the case where the ground state exhibits d-
wave superconductivity, with large values of the critical
temperature and critical fields. Such study asks the ques-
tions of the competition between the d-wave superconduc-
tivity existing in the absence of the field and the tendency
to SDW ordering induced by the field, the possible coex-
istence between these two different types of ordering, the
symmetry breaking in the presence of the field and the
behaviour of the gap at the Fermi energy in the reciprocal
space.

Krishana et al. [5] have, indeed, reported a series of
high-resolution measurements of thermal conductivity κ
in the cuprate Bi2212 that reveal a surprising feature of
the quasi-particles heat current. These measurements ex-
hibit a phase transition induced by a magnetic field and
characterized by a kink in the thermal conductivity as
a function of field strength, followed by a flat plateau.
In the high field state, the quasiparticle current is still
zero which means that the superconducting order param-
eter still exists. However, if the interpretation of the data
by a disappearance of the quasiparticles is correct [5,9],
the new state is necessarily characterized by a new or-
der parameter and a new symmetry breaking [10]. Indeed,
the Fermi surface of Bi2212 displays extremely good nest-
ing properties, probably the best among all the known
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high Tc superconductors [11,12]. Therefore, if the super-
conducting state would not exist, we would expect that
above a moderate threshold field, a field induced SDW
occurs and breaks the time-reversal symmetry. However,
we know that, in the absence of the field, the stable state
at low temperature is superconducting. Therefore, we dis-
cuss, in the present work, the nature of the new high-field
state and how the anomalies observed in the thermal con-
ductivity of Bi2212 could be explained in this framework
by the disappearance of the quasiparticles in the applied
field.

In the following, we present our simple model of a
quasi-two-dimensional d-wave superconductor. Then we
study, in the mean field approximation, the phase diagram
when a moderate magnetic field is applied perpendicu-
larly to the conducting plane. We discuss, in particular,
the possible coexistence of d-wave superconductivity and
SDW ordering. Such a coexistence should correspond to
new symmetry breaking and should open a gap on the
whole Fermi surface. Finally, we comment about the pos-
sibility to ascribe to this effect the anomalies observed in
the thermal conductivity of Bi2212.

2 Model

We study a nearly square two-dimensional Fermi surface
with strong nesting properties, as a model for high Tc su-
perconductors. We assume that well defined quasiparticles
exist at low temperature and can be treated in a Landau-
Fermi liquid approach.

We propose to treat the electron-electron interaction in
a mean field approximation, with two different symmetry-
breaking order parameters: the first is an effective attrac-
tive electron-electron interaction term, which breaks the
gauge symmetry. We do not specify the microscopic origin
of this term leading to superconductivity. The second, the
origin of which is the exchange interaction, is an electron-
hole coupling term, leading to a time-reversal symmetry
breaking SDW state. The mean field Hamiltonian H in-
cludes the non interacting electron term H0, the super-
conducting term Hs and the magnetic term Hm

H = H0 +Hs +Hm

where

H0 =
∑
k,σ

ξkc
+
k,σck,σ

Hs = −
∑
k,k′

gs(k, k′)c+k,↑c
+
−k,↓c−k′,↓ck′,↑

Hm = −
∑
k,k′

gm(k, k′)c+k+q,↓ck,↑c
+
k′−q,↑ck′,↓

where ξk is the non interacting electron dispersion rela-
tion, ck,σ is an electron annihilation operator. The coef-
ficients gs and gm are respectively the superconductivity
and the magnetic coupling constants.

In the nearly square Fermi surface, we approximate
the electron dispersion relation by a linearized expression
for two opposite flat sheets of the Fermi surface

ξ (kx, ky) = ξ0 (kx) + t⊥ (ky)− µ (1)

where

ξ0 (kx) = vF (|kx| − kF)

t⊥ (ky) = −2t cos (kyb)− 2t′ cos (2kyb)

where kx and ky are respectively the electron wave vec-
tor components perpendicular and parallel to the Fermi
surface sheet and µ is the chemical potential. Here, the
dispersion relation is considered as linear along kx and
t⊥ (kyb), where b is the lattice parameter along the y-
direction, represents the periodic dependence on ky. The
second harmonic term t′ introduces the deviation from
perfect nesting of the Fermi surface. It is essential to pre-
serve the metallic or superconducting phase stability in
the absence of the applied magnetic field. This dispersion
relation is strictly two-dimensional. The straightforward
extension to the quasi two-dimensional case introduces a
small threshold field in the phenomena studied here and
will be discussed later. A similar dispersion relation ap-
plies for the other pair of parallel sheets of the Fermi sur-
face. In this work, the Fermi velocity will be considered as
a constant. The extension to a k-dependent Fermi velocity
will be considered in a forthcoming paper.

The calculation will be done in the mixed representa-
tion

(
∂
∂x , ky

)
. The magnetic field H = rotA will be writ-

ten in the following gauge: A = (0,Hx). The effect of the
field will be taken into account by the Peierls substitution:

k→ k− eA
c
·

We have not taken into account the Zeeman effect energy
terms in the Hamiltonian. These terms, indeed, split the
Fermi surface into two pieces for up and down spins re-
spectively. However, they cancel out when one calculates
the SDW response function and order parameter, since
these quantities only involve the product of Green’s func-
tions for opposite spins. Such would not be the case for a
charge density wave instability, where the two Fermi sur-
faces would have two different nesting wave vectors, each
of them involving only one half of the density of states,
with a dramatic effect on the critical temperature. This
is why a spin density wave rather than a charge density
wave is induced by the magnetic field.

In the second part of this section, we shall first write
down Gork’ov’s equations for Green functions in the su-
perconducting and SDW states in the presence of an ap-
plied magnetic field. We shall then study the mean field
self-consistent conditions for superconductivity and SDW
order parameters. Then, in the third part of this sec-
tion, we shall calculate the thermodynamic potential cor-
responding to the possible states and compare their sta-
bility as a function of temperature and magnetic field.
Finally, we shall propose a possible phase diagram for a
set of likely physical parameters.
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2.1 Gap equations

We define the corresponding time Fourier transforms of
the Green functions in the presence of an applied magnetic
field

F+
m (k, τ − τ ′) = −Tτ 〈 [ cH,k+q↓(τ)c+H,k↑(τ

′) ] 〉 (2)

F+
s (k, τ − τ ′) = −Tτ 〈 [ c+H,−k ↓(τ)c+H,k↑(τ

′) ] 〉 (3)

and the single particle Green’s function is given by

G(k, τ) = −Tτ〈[cH,k↑(τ)c+H,k↑(τ
′)]〉. (4)

The time and space Fourier transforms of these Green’s
functions satisfy the following coupled equations of motion

[i~ωn + ivF
∂

∂x
+ vFkF + µ+ t⊥ (kyb− eHbx)]

×G(x, x′, ky, ωn) +∆sF
+
s (x, x′, ky, ωn)

+∆mF
+
m (x, x′, ky, ωn) = ~δ (x− x′) (5)

[−i~ωn − ivF
∂

∂x
+ vFkF + µ− t⊥ (−kyb− eHbx)]

× F+
s (x, x′, ky, ωn)−∆∗sG(x, x′, ky, ωn) = 0 (6)

[i~ωn − ivF
∂

∂x
− vFkF − vFqx + µ

− t⊥(kyb− eHbx+Qyb)]F+
m (x, x′, ky, ωn)

+∆∗mG(x, x′, ky, ωn) = 0 (7)

where p = kyb−eHbx, ωn indicate Matsubara frequencies
and Q = (2kF + qx, Qy) is the SDW vector.

It is possible to write these equations in a simpler form
by expliciting phase factors in the various Green’s func-
tions and defining

g = G(x, x′, ky, ωn)e−iϕg(x,x′,ky)

fs = F+
s (x, x′, ky, ωn)e−iϕs(x,x′,ky)

fm = F+
m (x, x′, ky, ωn)e−iϕm(x,x′,ky).

It is straightforward to show that for the following choice
of the phase factors

ϕg = kF (x− x′)− 1
vF

∫ x

x′
t⊥

(
p− u

x0

)
du

ϕs = kF (x− x′)− 1
vF

∫ x

x′
t⊥

(
p− u

x0

)
du

− 1
vF

∫ x

x′
t⊥

(
−p− u

x0

)
du

ϕm = kF (x− x′) +
1
vF

∫ x

x′
t⊥

(
p− u

x0

)
du

+
1
vF

∫ x

x′
t⊥

(
p− u

x0
+Qyb

)
du

where x0 = c
eHb is the magnetic length, the motion equa-

tions read :

(iωn + ivF
∂

∂x
)g + ∆̃sfs + ∆̃mfm = δ(x− x′)e−iϕg (8)

(−iωn − ivF
∂

∂x
)fs − ∆̃∗sg = 0 (9)

(iωn − ivF
∂

∂x
− vFqx)fm + ∆̃∗mg = 0 (10)

where ∆̃s and ∆̃m are new effective self consistent poten-
tials defined as

∆̃s (x, ky) = ∆s (x) exp
{

i
vF

(−2vFkF − 2µ) (x− x′)

−i
x0

vF

∫ x

x′

[
t⊥

(
kyb−

u

x0

)
+t⊥

(
−kyb−

u

x0

)]
du
}

(11)

∆̃m (x, ky) = ∆m (x) exp
{

i
vF

(−2µ) (x− x′)

+i
x0

vF

∫ x

x′

[
t⊥

(
kyb−

u

x0

)
+t⊥

(
kyb−

u

x0
+Qyb

)]
du
}
· (12)

The phase factor of ∆̃m (x) is a periodic function which
can be expanded on the basis of plane waves

∆̃m (x) = ∆m

∑
n

anIn (z, z′) exp
(
−in

x

x0

)
(13)

where n is an integer and

z =
4tx0

vF
cos
(
Qyb

2

)
z′ =

2t′x0

vF
cos (Qyb)

an (p) = exp (−iz sin p− iz′ sin 2p+ inp)

In =
∑
l

Jl (z′)Jn−2l (z)

where Jl is the lth order Bessel function. The effective
magnetic potential ∆̃m (x) couples the state with wave
vector k not only to the state with wave vector k + Q,
but also to an infinite set of states with quantized wave
vectors k + Qn. The nesting wave vector should be de-
termined to get the higher critical temperature and the
lower SDW phase free energy. Such a condition implies
that the x-component should be quantified. The choice
Qn =

(
2kF + n

x0
, Qy

)
insures that the effective poten-

tial opens a gap at the Fermi level in the quasiparti-
cle spectrum. It can be also shown that, for these quan-
tified wave vectors, the magnetic response function ex-
hibits a logarithmic divergence as T → 0, characteristic
of one dimensional systems. The one-dimensional nature
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of the problem is obvious from equations (8, 9, 10). We
still have to determine the y-component of the wave vec-
tor. This can be done numerically by minimising the SDW
free energy for each value of the field.

∆̃m opens in the quasiparticle spectrum an infinite
number of gaps separated by the cyclotron energy ~ωc =
eHvFb
c . Because of the wave vector quantization, one of

these gaps is always opened at the Fermi level: this is the
main gap. The quantum number n is determined by the
condition that the main gap is the largest one. The other
secondary gaps have smaller effects on the physical prop-
erties of the system provided ∆m � ~ωc and will be ne-
glected here. Furthermore, we shall only consider the case
of an applied magnetic field much smaller than the ther-
modynamic critical field for superconductivity. The effects
on ∆m can be large when ~ωc is of the order of t′, while
those on ∆s are important only when ~ωc ' t. For that
reason, we shall ignore the orbital effect of the field on ∆s.

With these approximations, we obtain superconduc-
tivity and SDW Green’s functions as a function of super-
conductivity and SDW order parameters

F+
m (k, ωn) =

~∆∗m(k)
(~ωn)2 + ξ02(kx) +∆2

s (k) +∆2
m(k)

(14)

F+
s (k, ωn) =

~∆∗s (k)
(~ωn)2 + ξ02(kx) +∆2

s (k) +∆2
m(k)

· (15)

It should be emphasized that only the one-dimensional
dispersion relation ξ0 (kx) enters these equations.

We now turn to the superconductivity and SDW gap
equations which are given by the self-consistent conditions

∆s(k) =
∑
k′

gs(k, k′)〈cH,−k′↓cH,k′↑〉 (16)

∆m(k) = −
∑
k′

geff
m (k + q, k′,H)〈c+H,k′+q↓cH,k′↑〉. (17)

Here the magnetic coupling geff
m is due to the orbital ef-

fect of the field which changes ∆m in ∆̃m. Keeping in the
equation (13) only the term corresponding to the main
gap, we obtain the following effective coupling constant

geff
m (k + q, k′,H) = gm(k, k′)I2

N (H,T ) (18)

where N (H,T ) is an integer number given by

I2
N (H,T ) = max

n

[
I2
n (H,T )

]
. (19)

Using (14, 15, 16, 17) we obtain

∆s(k) =
1
β

∑
k′

gs(k, k′)
∑
n

e−iωnε

× ∆s(k′)
(~ωn)2 + ξ02(k′) +∆2

s (k′) +∆m
2(k′)

(20)

and

∆m(k) =
1
β

∑
k′

geff
m (k, k′,H)

∑
n

e−iwnε

× ∆m(k′)
(~wn)2 + ξ02(k′) +∆2

s (k′) +∆2
m(k′)

· (21)

Angle-resolved photoemission spectroscopy (ARPES),
penetration depth measurements, point contact tunneling
measurements and Raman scattering experiments were
all interpreted as providing evidence for a superconduct-
ing order parameter consistent with dx2−y2 symmetry
[1,4,11–17]. For that reason, we have choosen to impose
such a symmetry for the superconducting order parameter
in the solution of the gap equations. As regards the SDW
order parameter, its symmetry is imposed by the numer-
ical solutions of the coupled self-consistent equations. On
the other hand, it is required that the SDW order pa-
rameter does not vanish on the node of the dx2−y2–wave
superconductivity order parameter [10]. The SDW order
parameter considered here corresponds to the dxy–wave
symmetry.

Such a choice for the symmetry of the SDW order pa-
rameter is not obvious. We have also tried different simple
k-dependences [18,19], in particular a k-independent con-
stant for the magnetic gap. It turned out that the dxy –
wave symmetry gives the higher stability, among the other
simple choices we have made. This is probably due to the
fact that the magnetic gap is maximum at the nodes of the
superconducting order parameter. Of course, we cannot
exclude that more complex solutions would give a lower
free energy.

The next step consists in defining superconductivity
and SDW coupling potentials which display the gap sym-
metry. The approximated expressions are given by

gs(k, k′) = gosfs(k)fs(k′)

geff
m (k, k′,H) = geff

om(H)fm(k)fm(k′)

where

fs(k) = cos(kxa)− cos(kyb)
fm(k) = sin(kxa) sin(kyb).

The field dependence of geff
om is due to the orbital effect of

the field, responsible for quantum interference effects an-
alyzed in details in reference [9]. This effect induces bet-
ter nesting properties and, therefore, an effective coupling
constant geff

om(H) rapidly increasing with the field.
We next introduce the coupled gap equations which

can be written as follow

1 = gos

∑
k

f2
s (k)

tanh( Ek2kT )
2Ek

(22)

1 = geff
om

∑
k

f2
m(k)

tanh( Ek2kT )
2Ek

(23)

where

Ek =
√
ξ02 +∆2

s (k) +∆2
m(k)

∆s(k) = ∆osfs(k)
∆m(k) = ∆omfm(k).
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2.2 Thermodynamic potential

The thermodynamic potential Ω is calculated by means of
integration over a variable coupling constant [20]. We con-
sider that the thermodynamic potential Ωn in the normal
state is just that of a free Fermi gas Ω0. Then, the ther-
modynamic potential, compared with that of the metallic
phase Ω0 will be given by

Ωi −Ω0 =
∫ 1

0

dλ
λ
〈λHi〉 (24)

where i indicates the corresponding state. According
to (24), we have calculated the thermodynamic potential
for the three possible phases: the superconducting phase,
the pure SDW phase and a mixed phase in which a super-
conducting order parameter and a magnetic order param-
eter coexist. The mean field expressions are the following

Ωs −Ω0 =
∆2

s (k)
gos

− 2
β

∑
k

Ln

[
cosh(βE

s
k

2 )

cosh(βξ
0(k)
2 )

]
(25)

Ωm −Ω0 =
∆2

m(k)
geff

om

− 2
β

∑
k

Ln

[
cosh(βE

m
k

2 )

cosh(βξ
0(k)
2 )

]
(26)

Ωmixed −Ω0 =
∆2

s (k)
gos

+
∆2

m(k)
geff

om

− 2
β

∑
k

Ln

[
cosh(βEk2 )

cosh(βE
s
k

2 )

]

− 2
β

∑
k

Ln

[
cosh(βEk2 )

cosh(βE
m
k

2 )

]
(27)

where

Es
k =

√
ξ0(k)2 +∆2

s (k)

Em
k =

√
ξ0(k)2 +∆2

m(k)

Ek =
√
ξ0(k)2 +∆2

s (k) +∆2
m(k).

3 Results

In order to find the most stable state, we have calculated
the thermodynamic potential as a function of tempera-
ture and of the SDW coupling constant geff

om (or, equiva-
lently, of the magnetic field) for the possible phases consid-
ered in this work: a pure d-wave superconducting phase, a
pure SDW phase alone and a mixed phase in which super-
conducting and SDW orders coexist. In that calculation,
we have choosen typical plausible physical parameters de-
scribing the system: gos = 0.5 eV, the energy cut off is
0.01 eV for the superconducting interaction and 0.6 eV
for the magnetic interaction. For such parameters, the su-
perconducting critical temperature is fixed at 110 K.

In Figure 1 we report the thermodynamic potential
dependence on the SDW coupling constant geff

om of each
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Fig. 1. Thermodynamic potential dependence on the SDW
coupling constant geff

om of the three phases: superconducting
phase (Solid line), SDW phase (Dashed line) and mixed phase
(Long dashed line) calculated for gos = 0.5 eV and T = 10 K.

phase, at a fixed temperature T . In Figure 1, T = 10 K,
but the corresponding behaviour has a general validity,
at least up to T < 100 K. This graph reveals different
domains of stability for the various phases.

At low values of the magnetic interaction geff
om, the sta-

ble phase is the pure superconducting phase. Then for
increasing geff

om, the mixed phase becomes stable for geff
om

varying in the range geff
om1 < geff

om < geff
om2. At geff

om = geff
om1

a phase transition from the superconducting phase to the
mixed phase occurs. Then, at geff

om = geff
om2 a second tran-

sition occurs, from the mixed phase to the field-induced
SDW phase.

In Figures 2, 3 and 4 we show the temperature de-
pendence of the thermodynamic potentials for the three
phases as a function of temperature for three typical val-
ues of geff

om. In Figure 2, geff
om = 0.36 eV: the supercon-

ducting phase is stable at low temperature, up to a crit-
ical temperature (T = 22 K) at which a transition to
the mixed phase occurs; The second transition, from the
mixed state to the superconducting state, occurs at the
temperature T = 80 K. In Figure 3, for a larger value of
geff

om = 0.38 eV, the mixed phase is the most stable. In
Figure 4, for geff

om = 0.40 eV, the mixed phase is stable
until T = 100 K, where it degenerates with SDW phase.

The study of the T and geff
om dependence of the ther-

modynamic potentials allows to propose a phase diagram
shown in Figure 5, valid for the set of parameters choosen
above. The curves geff

om1(T ) and geff
om2(T ) indicate the first

order transition lines separating the domains of stability
of the three phases.

Then, we show the behaviour of the different or-
der parameters, as a function of temperature and field.
In Figures 6 and 7 we report numerical solutions of
equations (22, 23), in the mixed phase, for different values
of geff

om and for T = 10 K.
As obvious from these figures, the SDW order pa-

rameter ∆om increases with geff
om (and therefore with
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Fig. 2. Thermodynamic potential dependence on temperature
of the three phases: superconducting phase (solid line), SDW
phase (dashed line) and mixed phase (long dashed line) calcu-
lated for gos = 0.5 eV and geff

om = 0.36 eV.
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Fig. 3. Thermodynamic potential dependence on temperature
of the three phases: superconducting phase (solid line), SDW
phase (dashed line) and mixed phase (long dashed line) calcu-
lated for gos = 0.5 eV and geff

om = 0.38 eV.

the field). In the same time the superconductivity order
parameter ∆os is a decreasing function of geff

om. We remark
that the transition from dx2−y2 superconductivity to the
mixed phase, where superconductivity and SDW coexist,
is a first order, as already shown by the finite angles at
which the thermodynamic potential curves cross in Fig-
ures 2, 3 and 4. The transition line separating the mixed
phase and the SDW phase is also characterized by a first
order transition.

In Figures 8 and 9, we illustrate the superconduct-
ing and SDW order parameters dependence on temper-
ature, in the mixed phase, for different values of the
SDW coupling constant geff

om. The two order parameters
are calculated in the mixed phase for geff

om = 0.38 eV and
geff

om = 0.40 eV. The corresponding variation of the ther-
modynamic potentials of the three phases were shown in
Figures 3 and 4. From these figures, we can see that, in

0 20 40 60 80 100
Temperature (K)

-0.3

-0.2

-0.1

T
he

rm
od

yn
am

ic
 p

ot
en

tia
l (

m
eV

)

SC state
SDW state
Mixed state
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Fig. 5. Phase diagram corresponding to the dependence of
geff

om1 and geff
om2 on temperature for gos = 0.5 eV.

the mixed phase, with increasing values of geff
om, the super-

conductivity order parameter decreases and the SDW one
increases.

The most important conclusion of this study, in partic-
ular from the phase diagram of Figure 5, is that a magnetic
field applied perpendicularly to the conducting plane can
induce a first order phase transition to a mixed phase in
which superconductivity and magnetism coexist. Such a
phase corresponds to a new symmetry breaking, since the
time reversal symmetry as well as the gauge symmetry
are broken. Consequently, a gap is open over the whole
Fermi surface. The quasiparticles existing at low tem-
perature in the pure d-wave superconducting phase, be-
cause of the nodes of the gap, should, therefore, disappear
discontinuously at the critical field. This might be the ex-
planation of the plateau observed in the thermal conduc-
tivity κ of Bi2212 above a threshold applied field [5]. In
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this interpretation, the sharp break in slope in the ther-
mal conductivity is a signature of the first order transition
and the flat plateau that extends to high field is the signa-
ture of the mixed phase, in which the quasiparticle current
vanishes. Therefore, our results provide a plausible inter-
pretation of the experiments [5].

4 Discussion

In this section we have to start with a brief discuss of the
recent work including high temperature superconductors.

It could be thought, at first sight, that the kink in
the thermal conductivity as a function of the applied field
implies a second order phase transition. Such is not the
case, as already discussed by various authors, such as
Krishanaet al. [5], Lee [21] and Laughlin [10]. If the
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Fig. 8. Superconductivity (solid line) and SDW (dashed line)
order parameters as a function of temperature calculated for
gos = 0.5 eV and geff

om = 0.38 eV.
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order parameters as a function of temperature calculated for
gos = 0.5 eV and geff

om = 0.40 eV.

observed plateau in the thermal conductivity is an ex-
perimental evidence for the disappearance of quasiparti-
cles, this means that the quasiparticle density vanishes
abruptly at the critical field, in spite of the finite temper-
ature. This can be the case only if the field induces a large
gap in the excitation spectrum, of the order of the tem-
perature or larger. Therefore, the anomaly in the thermal
conductivity should be the signature of a strongly first
order transition.

In a recent paper, Laughlin [10], attributed the tran-
sition observed in Bi2212 by Krishana et al. [5] to the
development of a small dxy superconducting order param-
eter phased by π

2 with respect to the principal dx2−y2 one
to produce a minimum energy gap. Laughlin argued that
the new high-field state is the parity and time-reversal vi-
olating dx2−y2 + idxy superconducting state [22]. The es-
sential point of this argument is that the state must have a
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magnetic moment in order to account for the experiment
and this is possible only if it violates both parity and time-
reversal symmetry.

Recently, Anderson [23] attributed the anomalously
sharp dependence of the thermal conductivity on magnetic
field in Bi2212 to the appearance of magnetic field-induced
discrete spectrum at the gap nodes. First, Anderson sug-
gests that the magnetic field cause a Larmor precession of
all the electrons around the Fermi surface and shows that
Larmor frequency remains small compared with the max-
imum gap. In order to go beyond this latter semiclassical
picture, Anderson solve the Bogoliubov-de Gennes equa-
tions for the quasi-particle wave function near one of the
k-space nodes of the gap. Space dependence of the gap,
where the vortices are dense enough to overlap strongly
so that the magnetic field is uniform, was included.

We have implicitly assumed, up to now, a uniform pen-
etration of the magnetic field in the bulk of the sample.
This is far from obvious, since the magnetic flux is ex-
pelled by the Meissner effect. In fact, the field penetrates
in the sample through the vortex lines. Since Bi2212 is
an extreme type II superconductor, the London penetra-
tion length λ is quite large (much larger than the co-
herence length), so that, for the field used by Krishana
et al. [5], the mean distance between vortices is smaller
than λ. Therefore, for these fields, the magnetic field can
be considered as uniform over the sample. Let us note
that, whatever the correct interpretation of the phenom-
ena may be, the field penetration in the sample is due to
the vortices. Therefore, as the field intensity is varied, one
should expect hysteresis and irreversibility associated to
the vortex dynamics. This has been observed and com-
mented recently by Behnia et al. [24]. If, for large fields,
we can consider the penetration as nearly uniform, ob-
viously, this is no longer the case at low field, when the
mean distance between vortices becomes larger than λ. In
such a case, one would not expect a long range order in
the mixed phase, but rather regions of short range order
around the vortices, with a magnetic correlation length
of the order of λ. The discontinuities associated with the
phase transitions should be smoothed and eventually dis-
appear. Let use note that Behnia et al. [25] have reported
the absence of anomalies in the low-temperature-low-field
part of the phase diagram. This can be due to the effect
discussed above, which is by no means in contradiction
with Behnia’s comment, which argued that these data im-
ply the presence of quasi-particles in this part of the phase
diagram.

Of course, we cannot discard the possibility that the
anomalies observed in the thermal conductivity κ have
a completely different origin. In particular, it is possible
that these discontinuities might be related, not to an elec-
tronic phase transition, but to another completely differ-
ent phenomenon, such as the hysteretic behaviour of the
magnetization in the superconducting phase, because of
the irreversible vortex dynamics [26].

As discussed above, the gm axis can be considered as
a magnetic field axis, since the strength of the effective
interaction can be varied by varying the strength of the

field, through equations (18, 19). The coefficient IN , in our
simple model, is a unique function of t′

H . Therefore, for a
given value of t′, we are able to determine the field range
of existence of the mixed phase. Unfortunately, no precise
evaluation of the exact value of t′ in superconductors as
Bi2212 is still available, neither by ab initio calculation,
nor by experimental determination. Such an evaluation
of t′ is made difficult by its small value, much smaller
than t. If we consider as plausible value of t′ ' 10 meV,
then the mixed phase should be stable for field larger than
H1 ' 40 T, but smaller than H2 ' 60 T. For t′ ' 1 meV,
then H1 = 4 T and H2 = 6 T.

In this work, we have neglected the diamagnetic ef-
fect on the thermodynamic potential of the superconduct-
ing phase. This approximation is justified for fields much
smaller than the upper critical field Hc2. This condition
should be fulfilled in the relevant part of the phase dia-
gram in the (H,T ) plane for small enough values of t′.
However, for larger values, this is no longer the case and
the diamagnetic term should be included in the super-
conducting phase thermodynamic potential. We have not
taken into account this effect which should favour the
mixed phase. We have not either taken into account in
details the role of the vortices in the Abrikosov phase
of the d-wave superconductor. The Doppler shift effects
due to circulating supercurrents around the vortices pro-
duce, in the Abrikosov phase, a finite density of states at
the Fermi energy, corresponding to those excitations that
have move down in energy. But this effect disappears when
the magnetic order sets in, because of the presence of a
large SDW gap. Therefore, this effect, which has been ne-
glected here, is expected to enhance the stability of the
coexistence phase, since it weakens the superconducting
gap. The detailed study of this effect will be devoted to a
forthcoming paper.

5 Conclusion

In summary, we have performed a mean field treatment
of a simple model of quasi-two-dimensional d-wave super-
conductor, assuming two possible order parameters: a su-
perconducting one and a magnetic one. We have shown
that a magnetic field can induce a mixed phase in which
both orders coexist. Such a new phase corresponds to a
new symmetry breaking and should exhibit a finite gap
over the whole Fermi surface, at variance with the zero
field phase, in which the gap exhibits nodes on the Fermi
surface. We propose that such a simple model might pro-
vide a possible explanation for the anomalies observed in
the thermal conductivity of Bi2212 in a moderate applied
field.

We are grateful to J. Friedel, H. Aubin, K. Behnia and C.
Pasquier for very helpful and stimulating discussions. We
would like to express special thanks to Centre de Calcul El
Khawarizmi where the numerical calculations in this work were
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